Smoothing

BM1: Advanced Natural Language Processing

University of Potsdam

Tatjana Scheffler

tatjana.scheffler@uni-potsdam.de

November 1, 2016

AVers;r.
N2

.
1]
3 LD

%
<
dam
M .

Last Week

Language model: P(X; =w; | X; =W, ... Xi ;= W,)

Probability of string w, ... w, with bigram model:
P(wy ... Wy) = P(wq)P(wy [w,) .. P(w, [wy)

Maximum likelihood estimation using relative frequencies:

Clwy ... wi—1wy)

P(wt | Wyyens)wt—l) - C(wl wt—l)

low n high n
<€ >
modeling errors estimation errors

AVers;r.
N2

.
1]
] D

e’
8
dam
° L]

More about dealing with sparse data
Smoothing

Good-Turing estimation

Linear interpolation

Backoff models

AVers;r.
N2

£0d

An example

JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK
SHE READ A BOOK BY CHER

p(JOHN READ A BOOK)

p(JOHN|e) p(READ|JOHN) p(A|READ) p(BOOK|A) p(e|BOOK)

__ c(e JOHN) ¢(JOHN READ) ¢(READ A) ¢(A BOOK) ¢(BOOK e)
= Ypclew) Y, c(JOHNw) > c(READ w) > ,c(Aw) 3, c(BOOK w)

1 1 2 1 1

3 1 3 2 2

&

0.06
(Chen/Goodman, 1998)

AVers;r.
N2

£0d

An example

JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK
SHE READ A BOOK BY CHER

p(CHER READ A BOOK)

= p(CHER|e) p(READ|CHER) p(A|READ) p(BOOK|A) p(e|BOOK)

_ c(e CHER) ¢(CHER READ) ¢(READ A) c¢(A BOOK) c(BOOK o)
- Y ypcew) > c(CHERw) 3}, c(READ w) 3} c(Aw) > c(BOOK w)

— 0 0 2 1 1

_ 3 1 3 2 2

(Chen/Goodman, 1998)

AVers;r.
N2

.
1]
3 LD

%
<
dam
M .

ML estimate is “optimal” only for the corpus from which
we computed it.

Usually does not generalize directly to new data.
Ok for unigrams, but there are so many bigrams.
Extreme case: P(unseen|w,,) =0 for all w,,

This is a disaster because product with 0 is always O.

AVers;r.
N2

.
1]
3 LD

%
<
dam
M .

Honest evaluation

To get an honest picture of a model’s performance,
need to try it on a separate test corpus.

training corpus test corpus
model » evaluation

Maximum likelihood for training corpus is not necessarily
good for the test corpus.

O In Cher corpus, likelihood L(test) = 0.

AVers;r.
N2

.
1]
3 LD

%
<
dam
M .

Measures of quality

(Cross) Entropy: Average number of bits per word in
corpus T in an optimal compression scheme:

H,(T) = — - log, p(T)

Good language model should minimize entropy
of observations.

Equivalently, represent in terms of perplexity:

PP, (T) = 28»(1)

AVers;r.
N2

.
1]
3 LD

%
<
dam
M .

Smoothing technigues

Replace ML estimate

C(wi—1w;
P (s | i) = St

by an adjusted bigram count

C*(wi—1w;)
C(wi—l)

P*(wz | wz-_l) —

Redistribute counts from seen to unseen bigrams.

Generalizes easily to n-gram models with n > 2.

AVers;r.
N2

.
1]
3 LD
<,

Nggleleligligle

4

P(... | eat) in Brown corpus

ML estimate:
3 z P(...) =1
> P(..)=0
2
1
true
d..........._prob dist

A H HHEEE N D

up
his

(O}
L
——

chickens
mussels
whatever
garbage
affects

®)
S
=
O
O
-
)
Q
Q
O
Q
O
—

oM
GM

M

EM

M

LM
sjoaye
abeq.eb
lanajeym
sjessnw
Siy
SUBOIYD
dn

ay}

Laplace Smoothing

2 P(...)<1

S P(...)>0

oM
GM

M

EM

M

LM
sjoaye
abeq.eb
laAajeym
sjessnw
siy
SUaOIYD
dn

oy}

12

AVers;r.
N2

.
1]
3 LD

%
<
dam
M .

Laplace Smoothing

Count every bigram (seen or unseen) one more time
than in corpus and normalize:

Clwiqw;))+1 C(ww;) +1
(Clwi—iw) +1) C(wi—1) + |V

P]ap(wi ‘ wi—l) = E

(Y

Easy to implement, but dramatically overestimates
probability of unseen events.

Quick fix: Additive smoothing with some 0< ¢ < 1.

Clwi—1w;) + 46
C(wi—1) +6|V|

Pagq(wi | wi-1) =

Cher example

V| =11,
| seen bigram types| =11
= 110 unseen bigrams

Pap(Unseen | wi,) 2 1/14;
thus “count”(w,; unseen)
= 110*1/14=7.8.

Compare against 12
bigram tokens in training
COrpus.

AVers;r.
N2

.
1]
3 LD
<,

JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK
SHE READ A BOOK BY CHER

p(JOHN READ A BOOK)

— 141 1+1 142 1+1 141
- 11+3 11+1 11+3 1142 1142

~ 0.0001

p(CHER READ A BOOK)

— 140 140 142 1+1 141
- 11+3 11+1 11+3 1142 1142

~ 0.00003

Good-Turing Estimation

For each bigram count r in corpus, look how many
bigrams had the same count:

O “count count”n
Now re-estimate bigram counts as =(r+1)

One intuition:
O 0*is now greater than zero.
O Total sum of counts stays the same:

nr+1
E nrr*zz n(r + E n,r=N

Npr41

7\

AVers;r.
N2

1]
] LD
<,
-
2m
.

Good-Turing Estimation

Problem: n. becomes zero for larger .

Solution: need to smooth out n.in some way,
e.g. Simple G-T (Gale/Sampson 19995):

g -
£ ~X e P A
% o - . —— =©° - 3% - = ©° 1 N
oy N N | [
g § 9 ; .
? % % 2
R o S o
e R
o A R P s, o o
log10(r), frequency log10(r), frequency log10{r), frequency \
low r: high r:
Z.=2n./ (" - 1) directly use high, interpolate with

reliable n, linear regression

Good-Turing > Laplace

O oo N UL WN = O X

= fMLE

f empirical
0.000027

0.448
1.25
2.24
3.23
4.21
5.23
6.21
7.21
8.26

fLap
0.000137

0.000274
0.000411
0.000548
0.000685
0.000822
0.000959
0.00109
0.00123
0.00137

fdel
0.000037

0.396
1.24
2.23
3.22
4.22
5.20
6.21
7.18
8.18

fGT
0.000027

0.446
1.26
2.24
3.24
4.22
5.19
6.21
7.24
8.25

(Manning/Schutze after Church/Gale 1991)

AVers;r.
N2

.
1]
3 LD

%
<
dam
M .

Linear Interpolation

One problem with Good-Turing:
All unseen events are assigned the same probability.

ldea: P*(w, | wy,;) for unseen bigram w,_; w; should be
higher if w; is a frequent word.

Linear interpolation: combine multiple models with a
weighting factor A.

P*(w; | wi—1) = Aw;_yw; - Po(ws | wi—1) + (1 — Aw_ ;) - Pr(wy)

Linear inferpolation

Simplest variant: A

wi-Twi

Estimate from held-out data:

the same A for all bigrams.

%
<
dam
M .

AVers;r.
N2

.
1]
3 LD

training corpus

held-out corpus

test corpus

LL

A

Can also bucket bigrams in various ways and have one

A for each bucket, for better performance.

Linear interpolation generalizes to higher n-grams.

(graph from Dan Klein)

19

AVers;r.
N2

.
1]
3 LD

%
<
dam
M .

Backoff models

Katz: try fine-grained model first; if not enough data
available, back off to lower-order model.

O By contrast, intferpolation always mixes different models.

General formula (e.g., k=5):

d,-r if r = C(wi_lwi) >k

Cratz(Wi—1w;) =
ot (Wi-10i) {a(wi_l)-C(wi) if r <k

Choose @ and d appropriately to redistribute probability
mMass in a principled way.

20

Kneser-Ney smoothing

Interpolation and backoff models that rely on unigram
models can make mistakes if there was a reason why @
bigram was rare:

O “l can’t see without my reading

O Ci(Francisco) > Ci(glasses), but appears only in very specific
contexts (example from Jurafsky & Martin).

Kneser-Ney smoothing: P(w) models how likely w is to
occur after words that we haven't seen w with.

O captures “specificity” of “Francisco” vs. “glasses”

O originally formulated as backoff model, nowadays
interpolation

21

AVers;r.
N2

.
1]
3 LD
<,

%m

Smoothing performance

relatlve performance of algonthms on WSJ/NAB corpus, 3- gram

s 0.1 & -

g abs “disc-interp w1tten -bell-backoff

005§ ; 1

3 e .

Py 0 ' Jelinek-mercer-baseline _

2 005l 1

= I At

A |

2 RN katz

g 0.15 F ~,aneser-ney a i

5 kneser-ney-mod=_ . L

» 02 r]

2 . e &S

o o3 A _.G.j “ . &

g ‘0.25 B - ."\"ﬁtf" -

= 03 | 1

?‘E " " al M A al A A P " " P | " " "

© 100 1000 10000 100000 le+06 le+07
training set size (sentences) (Chen/Goodman 1998)

22

AVers;r.
N2

.
1]
3 LD
<,

da m

Summary

In practice (speech recognition, SMT, etc.):

O unigram, bigram models not accurate enough

O trigram models work much better

O higher models only if we have lots of fraining data

Smoothing is important and surprisingly effective.
O permits use of “deeper’” model with same amount of data

O “If data sparsity is not a problem for you, your model is too
simple.”

23

.
1]
3 LD

%
<
dam
M .

Part of Speech Tagging

24

