

Smoothing

BM1: Advanced Natural Language Processing

University of Potsdam

Tatjana Scheffler

tatjana.scheffler@uni-potsdam.de

November 1, 2016

Last Week

- Language model: $P(X_t = w_t \mid X_1 = w_1, ..., X_{t-1} = w_{t-1})$
- Probability of string $w_1 \dots w_n$ with bigram model: $P(w_1 \dots w_n) = P(w_1)P(w_2 | w_1) \dots P(w_n | w_{n-1})$
- Maximum likelihood estimation using relative frequencies:

$$P(w_t \mid w_1, \dots, w_{t-1}) = \frac{C(w_1 \dots w_{t-1} w_t)}{C(w_1 \dots w_{t-1})}$$

low n

high n

modeling errors

estimation errors

Today

- More about dealing with sparse data
- Smoothing
- Good-Turing estimation
- Linear interpolation
- Backoff models

An example

JOHN READ MOBY DICK MARY READ A DIFFERENT BOOK SHE READ A BOOK BY CHER

p(JOHN READ A BOOK)

$$= p(\mathsf{JOHN}|\bullet) \ p(\mathsf{READ}|\mathsf{JOHN}) \ p(\mathsf{A}|\mathsf{READ}) \ p(\mathsf{BOOK}|\mathsf{A}) \ p(\bullet|\mathsf{BOOK})$$

$$= \frac{c(\bullet \ \mathsf{JOHN})}{\sum_w c(\bullet \ w)} \ \frac{c(\mathsf{JOHN} \ \mathsf{READ})}{\sum_w c(\mathsf{JOHN} \ w)} \ \frac{c(\mathsf{READ} \ \mathsf{A})}{\sum_w c(\mathsf{READ} \ w)} \ \frac{c(\mathsf{A} \ \mathsf{BOOK})}{\sum_w c(\mathsf{A} \ w)} \ \frac{c(\mathsf{BOOK} \ \bullet)}{\sum_w c(\mathsf{BOOK} \ w)}$$

$$= 1 \qquad 1 \qquad 2 \qquad 1 \qquad 1$$

 ≈ 0.06

(Chen/Goodman, 1998)

An example

JOHN READ MOBY DICK MARY READ A DIFFERENT BOOK SHE READ A BOOK BY CHER

p(CHER READ A BOOK)

$$= p(\mathsf{CHER}|\bullet) \ p(\mathsf{READ}|\mathsf{CHER}) \ p(\mathsf{A}|\mathsf{READ}) \ p(\mathsf{BOOK}|\mathsf{A}) \ p(\bullet|\mathsf{BOOK})$$

$$= \frac{c(\bullet \; \mathsf{CHER})}{\sum_{w} c(\bullet \; w)} \ \frac{c(\mathsf{CHER} \; \mathsf{READ})}{\sum_{w} c(\mathsf{CHER} \; w)} \ \frac{c(\mathsf{READ} \; \mathsf{A})}{\sum_{w} c(\mathsf{READ} \; w)} \ \frac{c(\mathsf{A} \; \mathsf{BOOK})}{\sum_{w} c(\mathsf{A} \; w)} \ \frac{c(\mathsf{BOOK} \; \bullet)}{\sum_{w} c(\mathsf{BOOK} \; w)}$$

$$= \frac{0}{2} \qquad \frac{0}{1} \qquad \frac{2}{2} \qquad \frac{1}{2} \qquad \frac{1}{2}$$

= 0

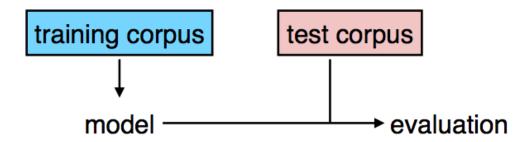
(Chen/Goodman, 1998)

Unseen data

- ML estimate is "optimal" only for the corpus from which we computed it.
- Usually does not generalize directly to new data.
- Ok for unigrams, but there are so many bigrams.
- Extreme case: P(unseen | w_{k-1}) = 0 for all w_{k-1}
- This is a disaster because product with 0 is always 0.

Honest evaluation

To get an honest picture of a model's performance, need to try it on a separate test corpus.



- Maximum likelihood for training corpus is not necessarily good for the test corpus.
 - In Cher corpus, likelihood L(test) = 0.

Measures of quality

(Cross) Entropy: Average number of bits per word in corpus T in an optimal compression scheme:

$$H_p(T) = -\frac{1}{N} \log_2 p(T)$$

- Good language model should minimize entropy of observations.
- Equivalently, represent in terms of perplexity:

$$PP_p(T) = 2^{H_p(T)}$$

Smoothing techniques

Replace ML estimate

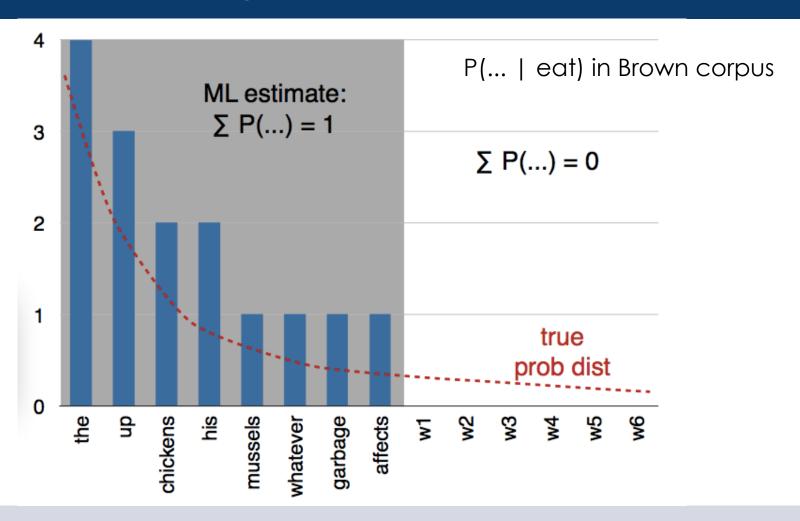
$$P_{\text{ML}}(w_i \mid w_{i-1}) = \frac{C(w_{i-1}w_i)}{C(w_{i-1})}$$

by an adjusted bigram count

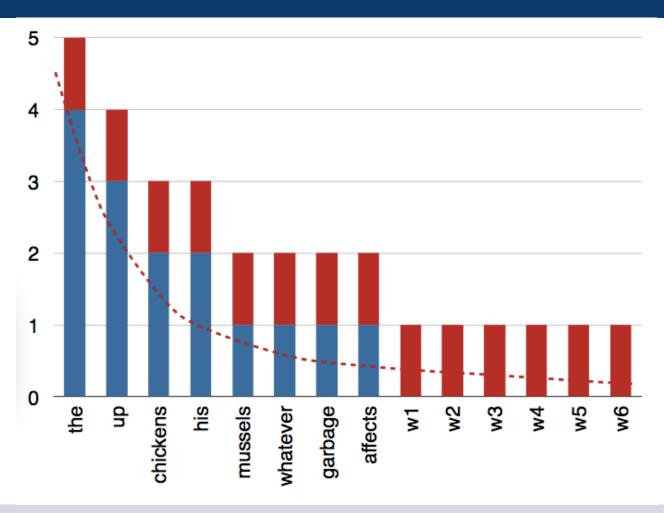
$$P^*(w_i \mid w_{i-1}) = \frac{C^*(w_{i-1}w_i)}{C(w_{i-1})}$$

- Redistribute counts from seen to unseen bigrams.
- \square Generalizes easily to n-gram models with n > 2.

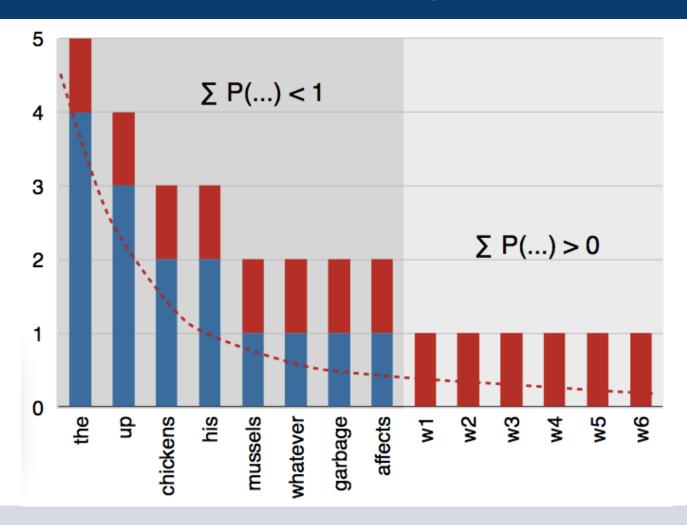
Smoothing



Laplace Smoothing



Laplace Smoothing



Laplace Smoothing

Count every bigram (seen or unseen) one more time than in corpus and normalize:

$$P_{\text{lap}}(w_i \mid w_{i-1}) = \frac{C(w_{i-1}w_i) + 1}{\sum_{w} (C(w_{i-1}w) + 1)} = \frac{C(w_{i-1}w_i) + 1}{C(w_{i-1}) + |V|}$$

- Easy to implement, but dramatically overestimates probability of unseen events.
- \square Quick fix: Additive smoothing with some $0 < \delta \le 1$.

$$P_{\text{add}}(w_i \mid w_{i-1}) = \frac{C(w_{i-1}w_i) + \delta}{C(w_{i-1}) + \delta|V|}$$

Cher example

- |V| = 11, |seen bigram types| = 11⇒ 110 unseen bigrams
- □ P_{lap} (unseen | w_{i-1}) ≥ 1/14; thus "count"(w_{i-1} unseen) ≈ 110 * 1/14 = 7.8.
- Compare against 12 bigram tokens in training corpus.

JOHN READ MOBY DICK MARY READ A DIFFERENT BOOK SHE READ A BOOK BY CHER

p(JOHN READ A BOOK)

$$= \frac{1+1}{11+3} \frac{1+1}{11+1} \frac{1+2}{11+3} \frac{1+1}{11+2} \frac{1+1}{11+2}$$

≈ 0.0001

p(CHER READ A BOOK)

$$= \frac{1+0}{11+3} \frac{1+0}{11+1} \frac{1+2}{11+3} \frac{1+1}{11+2} \frac{1+1}{11+2}$$

 ≈ 0.00003

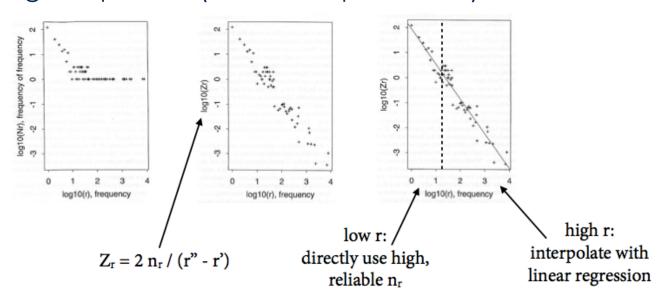
Good-Turing Estimation

- For each bigram count r in corpus, look how many bigrams had the same count:
 - "count count" n_r
- lacksquare Now re-estimate bigram counts as $r^* = (r+1)rac{n_{r+1}}{n_r}$
- One intuition:
 - 0* is now greater than zero.
 - Total sum of counts stays the same:

$$\sum_{r=0}^{\infty} n_r r^* = \sum_{r=0}^{\infty} n_r (r+1) \frac{n_{r+1}}{n_r} = \sum_{r=1}^{\infty} n_r r = N$$

Good-Turing Estimation

- Problem: n_r becomes zero for large r.
- Solution: need to smooth out n_r in some way,
 e.g. Simple G-T (Gale/Sampson 1995):



Good-Turing > Laplace

r = f _{MLE} 0 1 2 3 4 5 6 7	fempirical 0.000027 0.448 1.25 2.24 3.23 4.21 5.23 6.21 7.21	fLap 0.000137 0.000274 0.000411 0.000548 0.000685 0.000822 0.000959 0.00109 0.00123	f _{del} 0.000037 0.396 1.24 2.23 3.22 4.22 5.20 6.21 7.18	f _{GT} 0.000027 0.446 1.26 2.24 3.24 4.22 5.19 6.21 7.24
8 9	7.21 8.26	0.00123 0.00137	7.18 8.18	7.24 8.25

(Manning/Schütze after Church/Gale 1991)

Linear Interpolation

- One problem with Good-Turing:
 All unseen events are assigned the same probability.
- Idea: $P^*(w_i \mid w_{i-1})$ for unseen bigram $w_{i-1} \mid w_i$ should be higher if w_i is a frequent word.
- Linear interpolation: combine multiple models with a weighting factor λ .

$$P^*(w_i \mid w_{i-1}) = \lambda_{w_{i-1}w_i} \cdot P_2(w_i \mid w_{i-1}) + (1 - \lambda_{w_{i-1}w_i}) \cdot P_1(w_i)$$

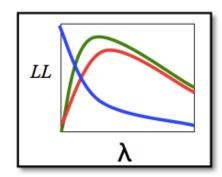
Linear interpolation

- \square Simplest variant: $\lambda_{\text{wi-1wi}}$ the same λ for all bigrams.
- Estimate from held-out data:

training corpus

held-out corpus

test corpus



- \square Can also bucket bigrams in various ways and have one λ for each bucket, for better performance.
- Linear interpolation generalizes to higher n-grams.

(graph from Dan Klein)

Backoff models

- Katz: try fine-grained model first; if not enough data available, back off to lower-order model.
 - By contrast, interpolation always mixes different models.
- General formula (e.g., k=5):

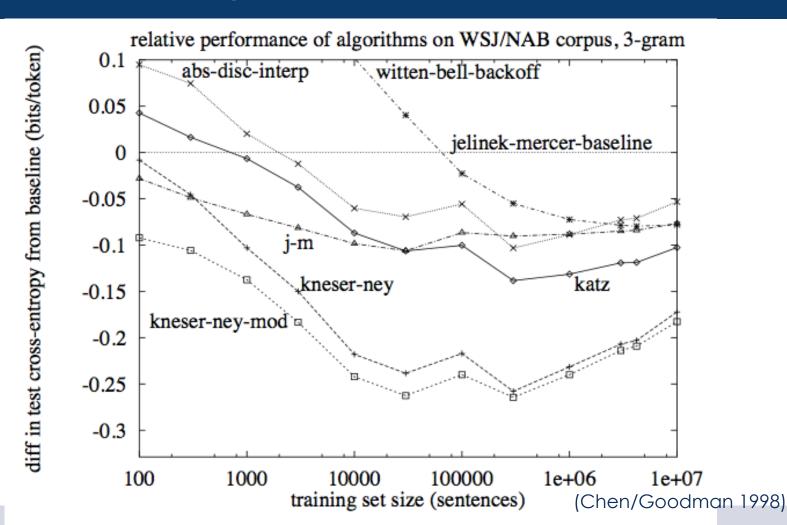
$$C_{\text{katz}}(w_{i-1}w_i) = \begin{cases} d_r \cdot r & \text{if } r = C(w_{i-1}w_i) > k \\ \alpha(w_{i-1}) \cdot C(w_i) & \text{if } r \leq k \end{cases}$$

 \square Choose α and d appropriately to redistribute probability mass in a principled way.

Kneser-Ney smoothing

- Interpolation and backoff models that rely on unigram models can make mistakes if there was a reason why a bigram was rare:
 - "I can't see without my reading _____"
 - C1(Francisco) > C1(glasses), but appears only in very specific contexts (example from Jurafsky & Martin).
- Kneser-Ney smoothing: P(w) models how likely w is to occur after words that we haven't seen w with.
 - captures "specificity" of "Francisco" vs. "glasses"
 - originally formulated as backoff model, nowadays interpolation

Smoothing performance



Summary

- In practice (speech recognition, SMT, etc.):
 - unigram, bigram models not accurate enough
 - trigram models work much better
 - higher models only if we have lots of training data
- Smoothing is important and surprisingly effective.
 - permits use of "deeper" model with same amount of data
 - "If data sparsity is not a problem for you, your model is too simple."

Friday

Part of Speech Tagging