
Smoothing 

BM1: Advanced Natural Language Processing 

University of Potsdam 

 

 

Tatjana Scheffler 

tatjana.scheffler@uni-potsdam.de

November 1, 2016 



Last Week 

¤  Language model: P(Xt = wt | X1 = w1 ,... ,Xt-1 = wt-1) 

¤  Probability of string w1 … wn with bigram model:           
P(w1 … wn) = P(w1)P(w2|w1) … P(wn|wn-1) 

¤  Maximum likelihood estimation using relative frequencies: 

 

 

low n                   high n 

modeling errors                estimation errors 

 
2 



Today 

¤  More about dealing with sparse data 

¤  Smoothing 

¤  Good-Turing estimation 

¤  Linear interpolation 

¤  Backoff models 

3 



An example 

4 

(Chen/Goodman, 1998)  



An example 

5 

(Chen/Goodman, 1998)  



Unseen data 

¤  ML estimate is “optimal” only for the corpus from which 
we computed it.  

¤  Usually does not generalize directly to new data.  

¤  Ok for unigrams, but there are so many bigrams.  

¤  Extreme case: P(unseen|wk-1) = 0 for all wk-1 

¤  This is a disaster because product with 0 is always 0.  

6 



Honest evaluation 

¤  To get an honest picture of a model’s performance, 
need to try it on a separate test corpus.  

¤  Maximum likelihood for training corpus is not necessarily 
good for the test corpus. 
¤  In Cher corpus, likelihood L(test) = 0.  

7 



Measures of quality 

¤  (Cross) Entropy: Average number of bits per word in 
corpus T in an optimal compression scheme:  

¤  Good language model should minimize entropy 
 of observations.  

¤  Equivalently, represent in terms of perplexity:  

8 



Smoothing techniques 

¤  Replace ML estimate 

¤  by an adjusted bigram count 

¤  Redistribute counts from seen to unseen bigrams. 

¤  Generalizes easily to n-gram models with n > 2.  
9 



Smoothing 

10 

P(... | eat) in Brown corpus 



Laplace Smoothing 

11 



Laplace Smoothing 

12 



Laplace Smoothing 

¤  Count every bigram (seen or unseen) one more time 
than in corpus and normalize:  

¤  Easy to implement, but dramatically overestimates 
probability of unseen events.  

¤  Quick fix: Additive smoothing with some 0 < δ ≤ 1.  

13 



Cher example 

¤  |V| = 11,                          
|seen bigram types| = 11  
⇒ 110 unseen bigrams 

¤  Plap(unseen | wi-1) ≥ 1/14; 
thus “count”(wi-1 unseen)  
≈ 110 * 1/14 = 7.8. 

¤  Compare against 12 
bigram tokens in training 
corpus.  

14 



Good-Turing Estimation 

¤  For each bigram count r in corpus, look how many 
bigrams had the same count: 
¤  “count count” nr 

¤  Now re-estimate bigram counts as  

¤  One intuition: 
¤  0* is now greater than zero.  

¤  Total sum of counts stays the same:  

 

15 



Good-Turing Estimation 

¤  Problem: nr becomes zero for large r.  

¤  Solution: need to smooth out nr in some way, 
 e.g. Simple G-T (Gale/Sampson 1995):  

16 



Good-Turing > Laplace 

17 

(Manning/Schütze after Church/Gale 1991) 



Linear Interpolation 

¤  One problem with Good-Turing: 
All unseen events are assigned the same probability. 

¤  Idea: P*(wi | wi-1) for unseen bigram wi-1 wi should be 
higher if wi is a frequent word.  

¤  Linear interpolation: combine multiple models with a 
weighting factor λ.  

18 



Linear interpolation 

¤  Simplest variant: λwi-1wi the same λfor all bigrams. 

¤  Estimate from held-out data: 

¤  Can also bucket bigrams in various ways and have one 
λ for each bucket, for better performance.  

¤  Linear interpolation generalizes to higher n-grams.  

 
19 

(graph from Dan Klein) 



Backoff models 

¤  Katz: try fine-grained model first; if not enough data 
available, back off to lower-order model.  
¤  By contrast, interpolation always mixes different models.  

¤  General formula (e.g., k=5): 

¤  Choose α and d appropriately to redistribute probability 
mass in a principled way.  

20 



Kneser-Ney smoothing 

¤  Interpolation and backoff models that rely on unigram 
models can make mistakes if there was a reason why a 
bigram was rare: 
¤  “I can’t see without my reading ______”  

¤  C1(Francisco) > C1(glasses), but appears only in very specific 
contexts (example from Jurafsky & Martin).  

¤  Kneser-Ney smoothing: P(w) models how likely w is to 
occur after words that we haven’t seen w with.  
¤  captures “specificity” of “Francisco” vs. “glasses” 

¤  originally formulated as backoff model, nowadays 
interpolation  

21 



Smoothing performance 

22 
(Chen/Goodman 1998) 



Summary 

¤  In practice (speech recognition, SMT, etc.):  
¤  unigram, bigram models not accurate enough 

¤  trigram models work much better 

¤  higher models only if we have lots of training data 

¤  Smoothing is important and surprisingly effective.  
¤  permits use of “deeper” model with same amount of data  

¤  “If data sparsity is not a problem for you, your model is too 
simple.”  

23 



Friday 

¤  Part of Speech Tagging 

24 


