
USER SIMULATION FOR THE EVALUATION OF BUS INFORMATION SYSTEMS

Jana Götze, Tatjana Scheffler, Roland Roller, and Norbert Reithinger

DFKI Projektbüro Berlin
Alt-Moabit 91c

10559 Berlin, Germany
firstname.lastname@dfki.de

ABSTRACT

In this paper, we describe our contribution to the Spoken Dia-

log Challenge. We set up a user simulation using the large

Let’s Go corpus as resource to build our models. Automatic

calls were made to all four dialog systems in the SDC, bus in-

formation systems that cover the schedule of Pittsburgh, PA.

We discuss in detail the architecture and required setup for our

system-independent user simulation and report the results and

challenges we faced. We also report initial evaluation results.

Index Terms— spoken dialog systems, user simulation

1. INTRODUCTION

User simulation is becoming an increasingly important part

in the research on spoken dialog systems. The growing de-

mand for systems that can be applied in various commercial

or non-commercial domains calls for methods that facilitate

their development and evaluation and user simulation can be

a means for both. It helps in the training of models for the

dialog manager and in evaluating the system as a whole.

As it is often difficult and time-consuming to test with hu-

man subjects, user simulation offers an alternative that com-

prises other advantages as well. A simulation’s behavior is

easier to control and can be modified at any given point. This

allows for easy testing already during development. Another

benefit for evaluation is the better comparability of results be-

cause the simulation changes its behavior only as specified by

the developers and can thus be run many times. This is an

important advantage over human testers who might behave in

unforeseeable ways or get frustrated by the system limits. On

the other hand, developers have to ensure that their simula-

tion is able to cover as many features of human behavior as

possible to obtain a natural simulation.

Currently, user simulation is mostly used for training a

dialog system’s dialog manager and building up resources for

language and behavior models (see [1] for an overview of user

simulation for SDS training) or for evaluating it at different

stages of development. For both purposes a great variety of

input is desirable to cover many different situations.

The SpeechEval user simulation [2] aims at exploiting

corpora of human-machine dialogs to build a user simula-

tion that is domain-independent and system-independent and

communicates with a spoken dialog system for the purpose

of evaluation. This framework allows for the automatic and

semi-automatic creation of resources for the construction of

a user simulation and provides utilities to use the simulated

dialogs for the evaluation of a specified system.

The Spoken Dialog Challenge (SDC) organized by the

Dialog Research Center of Carnegie Mellon University

(DialRC) was set up to compare and evaluate different ap-

proaches in the development of SDS. This year’s SDC was

the first of its kind. The task was based on a deployed system,

the Let’s Go system, providing bus schedule information for

the city of Pittsburgh, PA. Research groups were invited to

adapt their system to the schedule task or to modify the Let’s

Go system with modules from their own research. The task

specification thus left each group much freedom to decide to

replace, change or extend the original system’s architecture

and capabilities. Besides the evaluation with human evalu-

ators, the call was also open for systems in the area of user

simulation and automatic evaluation. The SDC provides an

ideal opportunity for us to test our simulation on realistic

systems. The large Let’s Go corpus of transcribed and an-

notated dialogs serves as an ideal resource to extract all the

information that is necessary to set up our simulation. Since

we developed our SpeechEval system based on a German

dialog system corpus the SDC also was the trigger to create

an English version of our simulation.

This paper is organized as follows. In section 2 we in-

troduce the SpeechEval system and how it was used for the

purpose of the SDC. Section 3 reports on our experiments

and results, followed by a conclusion in section 4.

2. SPEECHEVAL USER SIMULATION

2.1. The General Approach

The SpeechEval user simulation was originally built for eval-

uating German spoken dialog systems. Its purpose is to serve

as a general tool in the evaluation of SDS. Rather than special-

454978-1-4244-7903-0/10/$26.00 ©2010 IEEE SLT 2010

Fig. 1. Architecture of the SpeechEval system

izing on one particular system or domain the goal was to pro-

vide flexibility to cover a number of different domains. The

main idea of SpeechEval is to learn as much as possible from

existing corpora, in order to ease the evaluation designer from

the tedious task of manually setting up all knowledge sources

of the system.

SpeechEval was first developed and trained on a large cor-

pus of human-computer dialogs from the Voice Awards1 com-

petition that annually evaluates commercially deployed SDS.

The corpus contains about 2000 dialogs from 120 SDS [3].

This wide variety of different domains enables the simula-

tion to use domain-independent as well as domain-dependent

strategies in its dialogs. The collected dialogs were used to

build a general recognition grammar, a model of user behav-

ior and a collection of answer templates. Ontological infor-

mation about the domain can partly be extracted from a cor-

pus but has to be organized by hand. Depending on the task, it

is also possible to specify extra information about the system

that is to be tested, e.g. already known system prompts for the

speech recognition.

The system’s architecture (see fig. 1) maintains the mod-

ular organization of most SDS, consisting of modules for

speech recognition (ASR), natural language understanding

(NLU), action planning, answer generation (NLG) and a

text-to-speech module. As our simulation uses speech as

interface to the SDS a speech recognizer is the first part of

the architecture and takes as input the SDS prompt received

from the telephone line. Using speech instead of text or in-

tentions as interface in the simulation has the advantages of

being more realistic and more flexible. We also do not have

to worry about introducing ASR errors in our output and our

experiments show that the synthesized speech the simulation

sends to the SDS is similar in recognition rate to human input

(paper submitted).

1http://www.voiceaward.de

The NLU module is responsible for identifying the dia-

log act and additional keyword information in the incoming

speech request. This module is closely connected to the ASR

and mostly realized within the recognition grammar. The

module’s output are the recognized system prompt with its

dialog act and keyword information. This information is

passed on to the action planner.

The action planner constitutes the core module of every

SDS and represents the user behavior of our simulation. It

decides on what the system is going to do next. Depending on

the analysis of the incoming prompt it chooses a user reply.

Our answer planning is based on a statistical n-gram model

that aims to match the probabilities of user behavior within

the corpus. That means we model how people react to cer-

tain dialog acts and which kind of information they provide.

We also consider communication errors like repetitions and

misunderstandings by the SDS. This approach is close to the

one used in [4] for an information state update system. Ad-

ditionally we introduce different user groups (or stereotypes),

based on various characteristics. This includes planning fea-

tures such as cooperativity and average reaction time or gen-

eration features such as verbosity and fill word rate. Each

stereotype has its own statistical model. The action planner’s

output is an answer dialog act and the information we want to

reply.

The NLG module takes this information to generate a user

reply. We have opted for a template-based approach, similar

to [5]. Our templates are indexed for the dialog act they rep-

resent and the keyword information they contain. They also

include a mark for length, ranging from templates containing

only raw information to templates containing full sentences.

The module selects an appropriate template based on the dia-

log act and keywords we want to provide and also takes into

consideration its occurrence within the corpus and the cur-

rent stereotype and situation. The template is then filled with

information from the user goal and passed on to a speech syn-

thesis which sends the signal back to the SDS via telephone.

All dialogs are logged with several features from the dif-

ferent modules and are later used for a usability evaluation.

2.2. Adaptions for the Spoken Dialog Challenge

The SDC was a good opportunity to test the user simulation

for its usage in a real evaluation. The Let’s Go corpus pro-

vided by the organizers was used to create the necessary re-

sources for an English version of our user simulation that can

communicate with the systems to be tested. The size of the

corpus and the basic annotations are very well suited to set up

a user simulation based on the core SpeechEval system.

To build a recognition grammar, it is possible to directly

use all system utterances from the corpus. The corpus already

contains annotation on the intention level in the form of dialog

acts. For the NLU we could directly map dialog acts to system

prompts and build up the recognition grammars.

455

system prompt extracted slots

Going to <Children’s Hospital> Did I get that right ARRIVAL PLACE

Leaving from <Forbes at Atwood> Is this correct DEPARTURE PLACE

There is a <56e> leaving <Murray Avenue at Hazelwood> at <8 42 p.m.> ROUTE NUMBER

DEPARTURE PLACE

DEPARTURE TIME

It will arrive at <Fifth Avenue at Grant> at <9 10 pm> ARRIVAL PLACE

ARRIVAL TIME

Table 1. example system prompts that were used to extract lists of named entities

When extracting the dialog act information for the SDS

prompts, we decided to simplify the representation, mainly

for reasons of consistency. The minor changes we made

are renaming some of the acts (e.g. HOW MAY I HELP YOU

into OPEN QUESTION) and merging some acts where we

judged the difference irrelevant to our simulation (e.g. LOOK-

ING UP DATABASE and LOOKING UP DATABASE SUBSE-

QUENT). To overcome the problems we had when extracting

the information (see below) we automatically extended the

annotation where possible. For example, any prompt of the

form “[..] Did I get that right?” or “[..] Is this correct?” was

annotated as EXPLICIT CONFIRM.

The most frequently occurring system prompts are used

to extract lists of named entities for the keywords that each

system prompt contains, i.e. lists for the route numbers, the

arrival and departure places and neighborhoods and certain

system commands. See table 1 for some of the often occur-

ring system prompts in the Let’s Go corpus that we used for

this extraction step. These lists are used to extract keyword

information from a recognized prompt, such as determining

that the system is trying to confirm the place of arrival.

At the core of our dialog management are the dialog act

transition probabilities extracted from the corpus. Because of

a tight time schedule we used a simplified user model that

contained only bigrams extracted from the Let’s Go corpus.

Each unigram incorporates the dialog act and keyword infor-

mation of an utterance. We also did not distinguish between

different stereotypes.

Since the user prompts in the Let’s Go corpus are not

annotated with dialog act information, we use some of the

parsing information the corpus contains for the user utter-

ances. Parses are tagged as GENERIC YES, GENERIC NO

or e.g. PLACE INFORMATION and this information can be

used to identify that the user is accepting or rejecting a sys-

tem prompt or providing a certain piece of information. The

named entities that have been extracted for the grammar are

then used to identify the slots in these utterances, e.g. to

determine that the user is conveying information about his

departure time.

The NLG module takes the dialog act and keyword

information to choose an appropriate template. For ex-

ample, when given the information PROVIDE INFO AR-

RIVAL NEIGHBORHOOD the NLU module can choose one

of the following templates:

• I’d like to go to <ARRIVAL NEIGHBORHOOD>

• wanna go to <ARRIVAL NEIGHBORHOOD>

• to <ARRIVAL NEIGHBORHOOD>

• <ARRIVAL NEIGHBORHOOD>

The template is then filled with the corresponding information

from the user goal and sent to the text-to-speech module. The

selection of templates is carried out randomly and not on the

basis of their occurence within the corpus.

Initially, we used all user utterances that can be found in

the Let’s Go corpus for our templates, but first tests with the

simulation revealed that the corpus is not as ‘clean’ as the

VoiceAward corpus that was recorded under controlled con-

ditions. The rather high number of strange utterances where

callers obviously tried to trick the system required a manual

clean-up before we could process the corpus.

The simulation also includes default actions. The dialog

is automatically terminated when the system under test gen-

erates a prompt that it will hang up or that it is busy. We

also hang up when the dialog exceeds a cut-off time, which

is currently set to four minutes. Furthermore, we ignore input

where our recognition confidence is too low but only if this

doesn’t happen more than three times in a row. If our simu-

lation gets three SDS utterances in a row that are below our

cut-off, we take the last one as valid input and ignore our cut-

off until we get scores above it. For unknown input strings

we look for keyword information and use these to generate a

PROVIDE INFO dialog act to tease out a follow-up clarifica-

tion from the dialog system.

Overall, the data itself have proved an excellent resource,

because they contained only real dialogs, i.e. all the callers

called to obtain information for themselves and not because

they were asked to do so. These dialogs were extremely use-

ful when building a recognition grammar, user behavior mod-

els and templates for the generation of user responses. The

data could also be used to get information on the domain, such

as available bus routes and bus stops, although an exhaustive

corpus would have been helpful in setting up user goals for

the simulation.

456

departure place forbes avenue at craig

departure neighborhood oakland

arrival place fifth avenue at sixth avenue

arrival neighborhood downtown

route number 61 c

travel time 12 pm today

Table 2. An example goal for the user simulations

3. EXPERIMENTS AND RESULTS

In this section, we will report on our experiments (sections

3.1 and 3.2) and the results (section 3.3). Section 3.4 states

the organizational and practical problems we encountered.

3.1. System Setup

Our experiments include calls to all of the four dialog sys-

tems, that are identified here as systems 1-4. We set up six

different user goals with stops and neighborhoods extracted

from our corpus. An example goal is shown in table 2. Each

goal included the stop and neighborhood of both departure

and arrival, the time of departure and a bus line. Where we

could not match a neighborhood or route number from the

corpus we used the online travel information system provided

by Pittburgh’s Port Authority2.

Our simulation was set up to call each system five times

for each of the six goals. After making some adjustments to

the ASR we carried out another run. This should have yielded

a total of 30 dialogs per system, 120 dialogs altogether. How-

ever, for various reasons (see subsection 3.4) we obtained a

total of 111 dialogs. An extract from a dialog can be found in

table 4.

For the experiments, Nuance version 9.0 is used for our

speech recognition and MARY TTS as speech synthesis

(voice cmu-slt-hsmm). We report our average confidence

scores for the ASR because the simulation results may be

influenced by them. The differences in confidence scores

between the systems may be due to different telephone con-

nections and different synthesis methods (see also section

3.4).

3.2. Method

Of the 111 dialogs that we carried out with our user simula-

tion, only 48 are suitable for comparison. There are a number

of dialogs where the user hangs up. Our model of user ac-

tions is directly derived from the corpus and contains all user

actions. Since users may have chosen to hang up at any point

during the dialog for reasons that we do not know, the model

also contains these actions and our simulation can make use

of them. Note that the overall task success rate in the corpus is

2http://www.portauthority.org

also rather low (54.95% disregarding dialogs where the user

didn’t say anything) for this reason. For the purpose of eval-

uation these dialogs are not suitable because we cannot tell

why a dialog was terminated. Our results thus only report on

dialogs where the SDS could find a result or where the user

simulation hangs up after four minutes.

For a first evaluation of the dialogs that the systems pro-

duced with our user simulation, we choose to report some

simple measures that can be extracted from our dialog logs.

• average number of turns per dialog (tpd) to capture the

time it takes to complete the dialog. This is measured

as the number of turns of both the simulation and the

system divided by the number of completed dialogs.

• average turn length (atl) in seconds to put the number

of turns per dialog into perspective.

• task completion rate (tcr) to convey how often a query

was successful. This value is currently counted as the

number of times the system outputs a result. The sim-

ulation hangs up on the system per default after obtain-

ing a result, so a dialog contains at most one query.

• the rate of explicit confirms over all confirms (ex-conf)
to capture how well the system identifies the user’s in-

formation. Using more implicit confirms than explicit

confirms can be an indication for high confidence in

understanding the user.

• understanding rate (ur) to measure how many turns the

system needs to collect a piece of information. This is

measured for the arrival and departure places and the

travel time. We leave out the route number because a

system does not need it to find a result.

3.3. Results

We report the measures for all tested systems in table 3.3 but

leave out one of them (system 1) when comparing them, be-

cause unfortunately we could only obtain four dialogs and

none of them was successful. Our confidence for the other

three systems are nearly equal (.55 for both systems 2 and 4,

.57 for system 3). For our lack of sufficient data we will not

give a full evaluation here but only remark on some issues that

we found and that are reflected in the measured values.

System 2 has the highest task completion rate, it could

return a result bus route in 17 out of 18 dialogs (94%). It

needed on average 26.59 turns to complete a dialog. On the

other hand, system 4 has the lowest task completion rate (only

8 out of 13 dialogs (62%) yielded a bus route) but also needs

the fewest number of turns to complete its task (13.25). The

completion rate of system 3 is 71% but the average turn num-

ber per dialog is even a little higher than that of system 2

(28.17).

457

The high number of turns per successful dialog in system

3 is also reflected in our understanding rate. The system takes

many turns to understand and verify the different pieces of

information, especially the departure and arrival places. This

can be due to different reasons. The system’s ASR might have

had problems understanding our TTS, e.g. because of a bad

telephone connection. The system might also have had trou-

ble with only one certain piece of information and our simu-

lation wasn’t able to rephrase it in a way for the SDS to un-

derstand. The user goals were the same for all four systems,

but the dialogs should also be further evaluated for the impact

of the different goals to find out whether some place names

are harder to understand than others.

All systems make different use of confirmations. The only

system that uses implicit confirms is system 2. About 40% of

all confirmations are implicit and this has proved difficult for

our simulation (see section 3.4). The impact of confirms on

usability and quality is not fully understood. They are a means

of clarifying input where the system is not sure enough to

proceed but can be a source of frustration for the user if used

too often. Implicit confirms are usually a means of conveying

what was understood but still giving the user the possibility

to intervene. A reasonable alternation between explicit and

implicit confirms, taking into account recognition confidence

scores may prove a good strategy, but this an open research

question.

The understanding rate, defined as the number of turns a

system needs to collect a certain piece of information, can

give some indication on the system’s ability to understand

what the user is trying to say. There is no clear indication

of one piece of information being harder to understand than

another. There should be no difference between departure

and arrival place because both are taken from the same set of

places. The results also don’t show an overall difference be-

tween the places and the time information. System 4 was able

to collect the travel time fastest with only asking for it once,

for system 2 it seemed to take longest to understand the time

information. When looking more closely at the dialogs, the

reason for this is that the system splits up the information by

asking separately for the day and time of travel. The results

for system 3 suggest that it had some problems recognizing

place information as it took about three turns to understand

both arrival and departure place.

Based on these few measures it is not reasonable to draw

a valid conclusion on the differences in quality between the

systems. It remains to be seen how the human evaluations

relate to our simulation measures.

3.4. Experiences during the Tests

The SDC was organized according to a fixed timeline for the

development of the systems, their deployment and the eval-

uation procedure. Nevertheless, the schedule left room for

the participants to state and discuss their own opinions on is-

sys1 sys2 sys3 sys4
of dialogs 4 18 17 13

acs 0.79 0.55 0.57 0.55

tpd 26.59 28.17 13.25

atl 4.22 6.31 6.03 5.31

tcr 0.0 0.94 0.71 0.62

ex-conf 1.0 0.60 1.0 1.0

ur

departure 2.08 2.79 1.80

arrival 1.95 3.36 2.13

travel time 2.10 1.56 1.00

Table 3. The experiment results: the number of recorded di-

alogs, the average confidence score (acs), the turns per dialog

(tpd), the average turn length in seconds (atl), the task com-

pletion rate (tcr), the rate of explicit confirms (ex-conf) over

all confirms and the understanding rate for different items (ur)

sues like the logging of information. As this year’s SDC was

the first for both organizers and participants and since there

was no best practice yet, the participating research groups

collaborated very closely during the preparation and evalua-

tion phase. The SDC included user simulations for evaluation

from the beginning. However, since this type of evaluating

evaluation systems was rather new, the criteria for evaluations

had to be defined. Continuous communication and discussion

with the groups developing the systems helped us decide on

solutions that we judged reasonable for everyone, but a more

fixed framework could help overcome such formal problems.

While we carried out the adaption and test of the simu-

lation, we encountered a number of problems. Most of them

are related to the speech recognition, but there were also prob-

lems concerning the connection to the systems. This was ei-

ther due to database problems or miscommunication about the

times when the systems would be running.

For the first runs of the simulated dialogs, our recognition

confidence was very low. This was due to various factors.

First of all, it was related to the structure of our grammar.

The recognition was carried out dialog act by dialog act. As it

turned out, in some systems the different dialog acts followed

in quite short intervals (e.g. system 2 uses implicit confirms,

followed by instructions and requests). During the calculation

and output of a user reply, the recognition is switched off for

a short time. If during that time we receive the next speech in-

put, we miss its beginning. We had to restructure our grammar

to solve this issue. A modification of the recognizer settings

and an optimization of the streaming from telephone to ASR

have also improved the recognition.

Second, we extracted the place names from the corpus and

thus do not have a complete list. This results in a lower con-

fidence whenever the SDS uses one of the out-of-grammar

place names. For the other sentences that are recognized with

a low confidence we probably have to optimize the pronunci-

458

speaker utterance

sds Where would you like to leave from?

user From Oakland.

sds What is your destination?

user Downtown.

sds When do you want to travel?

user A bus at 12 54.

sds Travelling at 12 54. Is this correct?

user Alright yes.

sds Travelling at 12 54 p.m. Is this correct?

user Correct.

sds Leaving from the Oakland neighborhood.

Is this correct?

user That’s right.

Table 4. An extract from a simulated dialog (system 4)

ation dictionaries of our ASR.

Another problem seemed to be the precise domain of the

SDS we tested. We encountered the situation that system 3

was trying to suggest to our simulation a place to eat. We

also had the case where instead of a place name there was

only noise in the SDS output. This might also have been due

to a technical problem at the system’s site, e.g. a database

connection problem.

Since the SDC was open for systems around the world,

we also encountered a very human problem: different time

zones for the systems to be tested. The American systems

were up and running at night in Germany, so we had to set

up our simulations partially unsupervised. In case of techni-

cal problems, like system crashes or unavailable systems, we

could only intervene the next morning. So there are still some

technical issues open we could not identify.

4. CONCLUSION

This paper has demonstrated how a new corpus can serve as

a resource for the setup of our SpeechEval user simulation.

The Let’s Go corpus was ideal for extracting all the necessary

information to set up models for the different modules. This

has proved easy even for a new language.

The user simulation tests have revealed a number of tech-

nical issues that need to be overcome to get meaningful re-

sults. However, the generated dialogs can serve as a basis for

further improvement in our simulation strategy and be a re-

source for next year’s SDC. Although this corpus of simulated

dialogs is small, it can also be used to get a first insight into

other interesting questions, such as the differences in the En-

glish versus German behavior models (in-domain and across-

domain).

In this year’s SDC, we only participated with Speech-

Eval’s user simulation. The second part of SpeechEval, the

usability evaluation of the automatically tested dialog sys-

tems, was not used to analyze the test runs due to the tight

schedule. As a follow-up acitivity we will also test the auto-

matic usability evaluation on the data gained from the SDC. It

will also be interesting to see how the tests with human users

relate to our findings and how other user simulations perform

in future Spoken Dialog Challenges.

Overall, the Spoken Dialog Challenge was a very inspring

and, yes, challenging contest. At least for our simulation we

gained a tremendous amount of experience.

5. ACKNOWLEDGEMENTS

We would like to thank the organizers and the other partici-

pants in the SDC for their very cooperative collaboration.

This work is part of the project SpeechEval: Automatic

Evaluation of Interactive Speech-Based Services on the Ba-

sis of Learned User Models, which is being carried out in

cooperation with the Quality and Usability Lab at Technical

University Berlin. SpeechEval is funded by the Investitions-

bank Berlin through the ProFIT framework, grant #10140648.

This project is being co-financed by the European Union (Eu-

ropean Regional Development Fund).

6. REFERENCES

[1] J. Schatzmann, K. Weilhammer, M. Stuttle, and S. Young,

“A survey of statistical user simulation techniques for

reinforcement-learning of dialogue management strate-

gies,” The Knowledge Engineering Review, 2006.

[2] Sebastian Möller, Robert Schleicher, Dmitry Butenkov,

Klaus-Peter Engelbrecht, Florian Gödde, Tatjana Schef-

fler, Roland Roller, and Norbert Reithinger, “Usability

engineering for spoken dialogue systems via statistical

user models,” in First International Workshop on Spo-
ken Dialogue Systems Technology (IWSDS 2009), Kloster

Irsee, Germany, December 2009.

[3] Tatjana Scheffler, Roland Roller, and Norbert Reithinger,

“Semi-automatic creation of resources for spoken dialog

systems,” in KI 2009: Advances in Artificial Intelligence,

B. Mertsching, M. Hund, and Z. Aziz, Eds. 2009, vol.

5803 of LNAI, pp. 209–216, Springer.

[4] K. Georgila, J. Henderson, and O. Lemon, “Learning

user simulations for information state update dialogue

systems,” in Proceedings of the 9th European Conference
on Speech Communication and Technology (Eurospeech),
Lisbon, Portugal, 2005.

[5] R. López-Cózar, A. de la Torre, J. Segura, and A. Rubio,

“Assessment of dialog systems by means of a new sim-

ulation technique,” Speech Communication, vol. 40, pp.

387–407, 2003.

459

